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2 Instituto de F́ısica, Facultad de Ingenieŕıa, Casilla de Correo 30, 11000 Montevideo, Uruguay

Received 13 September 2006 / Received in final form 30 September 2006
Published online 17 November 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. High degrees of intensity correlation between two independent lasers were observed after prop-
agation through a rubidium vapor cell in which they generate Electromagnetically Induced Transparency
(EIT). As the optical field intensities are increased, the correlation changes sign (becoming anti-correlation).
The experiment was performed in a room temperature rubidium cell, using two diode lasers tuned to the
85Rb D2 line (λ = 780 nm). The cross-correlation spectral function for the pump and probe fields is
numerically obtained by modeling the temporal dynamics of both field phases as diffusing processes. We
explored the dependence of the atomic response on the atom-field Rabi frequencies, optical detuning and
Doppler width. The results show that resonant phase-noise to amplitude-noise conversion is at the origin of
the observed signal and the change in sign for the correlation coefficient can be explained as a consequence
of the competition between EIT and Raman resonance processes.

PACS. 32.80.Qk Coherent control of atomic interactions with photons – 42.50.Gy Effects of atomic co-
herence on propagation, absorption, and amplification of light; electromagnetically induced transparency
and absorption

1 Introduction

Electromagnetically Induced Transparency (EIT) has re-
ceived great attention in recent years in connection to sev-
eral interesting phenomena, such as light storage and slow
light propagation [1–3]. The strong interaction between
light and material media in this situation has been the
source of inspiration for various proposals of applications
of EIT to the quantum manipulation of information and to
transfer coherence from light to an atomic medium [2,4,5].

The strong interaction between pump and probe fields
in EIT can lead to significant changes in the noise spectra
of two independent lasers after propagation in an atomic
vapor, resulting in correlation between the fields, as was
first observed in reference [6]. A recent paper [7] reported
an experimental investigation of the dependence of the
phase correlation between both fields generating EIT as a
function of the optical depth and transparency frequency
window. The phase modulation (PM) introduced on the
pump field could be read in the probe field signal after
interaction with the atoms, for a Raman detuning within

a Permanent address: Departamento de F́ısica, Facultad de
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the transparency window. Nevertheless, no distinction be-
tween positive and negative correlation was reported in
that paper. The possibility of negative correlations for
large Raman detunings is discussed in reference [8], which
presents theoretical calculations for the correlation be-
tween the pump and probe fields in EIT configuration
caused by the atomic dipole fluctuations.

In this paper, we report new measurements in which
this kind of correlation originates from two independent
lasers. Both fields excite an atomic sample forming a Λ
system, resulting in a EIT situation. We define a normal-
ized correlation coefficient C, bounded by –1 and +1, and
report measurements of C as a function of intensity and
analysis frequency. As the laser intensities are increased,
intensity correlations become anti-correlations. Correla-
tions and anti-correlations as big as 0.65 and –0.65, re-
spectively, were observed. The results can be explained in
terms of the conversion of Phase-Noise into Amplitude-
Noise (PN-to-AN) as the lasers interact resonantly with
the atomic medium. The passage from correlation to anti-
correlation can be seen as a consequence of the passage
from EIT to a Raman resonance, both present in a 3-level
atom in the Λ configuration.

PN-to-AN conversion in atomic vapors has been stud-
ied since 1991, when its application to high-resolution
spectroscopy was first suggested by Yabuzaki et al. [9].



532 The European Physical Journal D

�
��

�
��

�
�

�
��

�

�
��

�
�

|0>

|0’>

|2>

|1>

(F’ = 3)

(F’ = 2)

(F = 3)

(F = 2)

(b)

(a)
Sat. Abs.

laser 2

laser 1

OI

OI

Rb cell

PD
�/2

�/2

PBS

NF

Rb

Cell

PBS
�/2

PD

PD

+

PBS

�/2

PD
PD

+

PBS

+

Spectrum

Analyzer

Analysis of laser 1

Analysis of
laser 2

SD 1

SD 2

SD 3

Lock-in 2

Lock-in 1

Fig. 1. (a) Experimental setup. The saturated absorption
setup for laser 2 is not shown. OI: optical isolator; PBS: po-
larizing beam splitter; PD: photo-detector; NF: neutral filter;
λ/2: half-wave plate. (b) Energy level representation for our
atomic model and its correspondence to the relevant Rb hyper-
fine states. Solid line represents the pump field with frequency
ω1; dashed line represents the probe field with frequency ω2.

This conversion relies on the characteristics of diode lasers,
which exhibit excess phase noise for usual experimental
conditions [10,11] while the amplitude is generally very
stable. This excess phase noise generates amplitude noise
of the polarization induced in the atomic medium [9,12]
and the intensity fluctuation spectrum of the transmit-
ted light is strongly dependent on the laser linewidth [13].
Since the fields detected after the medium are given by
the input fields plus the excited polarizations, they end
up acquiring excess noise in the amplitude quadrature.
The spectral noise components that match atomic reso-
nance frequencies present larger amplitude oscillations. In

this way, it is possible to acquire information about the
medium from the power spectrum of light after the sam-
ple [9,14,15]. The influence of laser fluctuations on the
atomic polarization has been widely studied for two-level
systems [16–18] and many models have been proposed
for treating the field phase fluctuation [12,19]. The phase
diffusing model has received more attention owing to its
proximity to the diode lasers extensively used in laborato-
ries. In a recent experiment [20], we performed measure-
ments of intensity noise spectra between the σ+ and σ−
components of a single, linearly polarized, exciting field in
a Rb atomic sample, as a function of the magnetic field
in a Hanle/EIT configuration. We observed correlations as
well as anti-correlations between the different polarization
components, depending on the detuning, controlled by the
magnetic field. A similar experiment was performed by
Sautenkov et al. [21], using two initially phase-correlated
beams in time domain, who also explained it in terms
of PN-to-AN conversion [22]. In reference [23] PN-to-AN
conversion has also been identified as a source of frequency
instabilities in Rb atomic clocks, and was eliminated with
a buffer gas cell that broadens the resonances through col-
lisions.

In the present work, the emphasis is on the PN-to-AN
conversion as a source of correlation between initially in-
dependent macroscopic fields. The paper is organized as
follows: in Section 2 we describe our experimental setup
and in Section 3 we present a theoretical model that in-
cludes two phase diffusing fields interacting with an atomic
system. In Section 4 we present our results, beginning
with the experimental correlation spectra as a function of
the analysis frequency and optical intensity. Then, in Sec-
tion 4.2, we present the numerical results and discussion.
As described below, although it is possible to extract the
basic aspects of the phenomena by modeling the atomic
system as 3-level atoms at rest, agreement with experi-
mental data is considerably improved by integrating over
the atoms’ different velocity classes and including all the
relevant excited atomic levels. We also found that the op-
tical detuning is essential for explaining the change in sign
for the correlation coefficient. For a perfectly resonant Λ
system, the EIT process is dominant and the fields become
correlated but, for an optical detuning of the order of the
excited-level decay rate, the Raman process prevails and
the fields become anti-correlated.

2 Experimental setup

Our experimental setup is shown in Figure 1. We em-
ployed two external-cavity diode lasers (ECDLs) of 1 MHz
linewidth and 15 mW power after optical isolators, tuned
to the Rubidium D2 line (λ = 780 nm). The two beams
had linear orthogonal polarizations and were combined in
a polarizing beam splitter (PBS). Their powers were ad-
justed to have equal intensities at the vapor cell. A small
portion of laser 2 was sent to a saturated absorption setup
for fine tuning, and had its frequency locked to the cross-
over peak between the 5S1/2(F = 3) → 5P3/2(F ′ = 2)
and 5S1/2(F = 3) → 5P3/2(F ′ = 4) transitions of 85Rb.
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The rejected output of the polarizing beam splitter is
used to observe EIT in an auxiliary vapor cell. Laser 1,
tuned to the 5S1/2(F = 2) → 5P3/2(F ′) transition, is
then locked on the EIT resonance using a Lock-in am-
plifier (see Fig. 1). In this way, we guarantee that the
Raman resonance condition for EIT was always fulfilled.
Both lasers were locked only by feedback applied to their
external cavity gratings. The laser intensities were con-
trolled by neutral density filters inserted just before the
main vapor cell. We also used a 2 mm-diameter diaphragm
to spatially filter the laser beams, ensuring a good spatial
superposition and a flat, nearly top-hat, intensity profile
over the cell.

After the cell, the beams were separated at a second
PBS and then analyzed at two independent balanced-
detection schemes. Photocurrents were combined in ac-
tive sum/subtraction circuits (SD), and noise was mea-
sured with a Spectrum Analyzer. Effective bandwidth of
our detection is limited by the gain of the amplifiers in
the range of 2.5 to 14 MHz. Beyond this frequency, elec-
tronic noise reduced the resolution of our measurements.
We can, therefore, measure the sum Ss(ω) and difference
Sd(ω) noise spectra, as well as the individual laser noise
spectra S11(ω) and S22(ω) by blocking a beam on each
balanced detection. It is then possible to obtain the nor-
malized correlation coefficient defined by

C(ω) =
S12(ω)

√
S11(ω)S22(ω)

. (1)

The symmetrical cross-correlation spectrum Sij(ω) be-
tween the lasers i and j is defined by

Sij(ω) =
1
2
〈δIi(ω)δIj(ω)∗ + δIj(ω)δIi(ω)∗〉. (2)

Thus, S12 can be obtained from

Ss = S11 + S22 + 2S12, (3a)
Sd = S11 + S22 − 2S12, (3b)

S12 =
1
4
(Ss − Sd). (3c)

A summary of all possibilities allowed by our setup is pre-
sented in Table 1. If laser 1 is blocked, one uses the SD2
circuit to calibrate shot noise (with the subtraction po-
sition of SD2) or measure the total noise (with the sum
position of SD2) of laser 2. If one blocks the laser 2, an
analogous reasoning is valid for the SD1 circuit. The sum
and difference noise spectra expressed in (3) are obtained
with the SD1 and SD2 switches both in the sum position
and changing the SD3 switch.

3 Theoretical model

3.1 The phase diffusing field

We developed a model based on Bloch equations. In the
D2 line of 85Rb two excited levels (out of 4 levels in-
side the Doppler broadened curve) can lead to EIT with

Table 1. Summary of the different possibilities of noise mea-
surements; s.n. means shot-noise; n.i. stands for no influence.

Measurement Beam blocked SD1 SD2 SD3
total noise 1 (S11) laser 2 + n.i. n.i.

s.n. of laser 1 laser 2 − n.i. n.i.
total noise 2 (S22) laser 1 n.i. + n.i.

s.n. of laser 2 laser 1 n.i. − n.i.
sum (Ss) none + + +
diff. (Sd) none + + −

the hyperfine ground states. Inclusion of a second excited
level is important to give a better agreement with the ex-
perimental curves. The atom is excited by two classical
fields that will be considered as having constant ampli-
tudes and independent stochastic phase fluctuations. Our
model is an adaptation of the model of reference [12] for
a three-level atom. The four levels are represented in Fig-
ure 1, where we made a correspondence of the hypotheti-
cal quantum states to the realistic levels of 85Rb. The two
ground states |1〉 and |2〉 correspond to 85Rb 5S1/2(F = 2)
and (F = 3), and the excited states |0′〉 and |0〉 stand for
the 5P3/2(F ′ = 2) and (F ′ = 3) levels, respectively. We
notice that these levels form two Λ systems for atoms of
two velocity classes differing by kv � 64 MHz, and the
EIT resonance in the room temperature vapor is built up
from nearly equal contributions of both these Λ systems.
Although all these four levels are important for a good
agreement with experimental data, for the sake of sim-
plicity we present an outline of calculations for a three
level system (excluding the excited |0′〉 level). The 3-level
system can already reproduce many of the experimental
aspects associated to the EIT resonance [6,20]. Further
inclusion of the fourth level is straightforward. In the fol-
lowing sections we will present numerical results for both
cases.

The laser fields are given by

Ei(t) = Ei exp [i(ωit + φi)]ei, (4)

where i = 1, 2 is a label to designate lasers 1 and 2, respec-
tively. Ei is the laser’s complex amplitude, ωi its frequency
and ei is a unit vector designating the field’s polariza-
tion. The time evolutions of the phases φ1(t) and φ2(t) are
described by two independent, uncorrelated Wiener pro-
cesses [24]. This corresponds to model the lasers as phase-
diffusing fields, with Lorentzian lineshapes [12]. Phase
fluctuations satisfy the relations

〈dφj〉 = 0, 〈dφjdφk〉 = 2
√

bjbkδjkdt (5)

where 2bj corresponds to the spectral width of laser j
and 〈· · · 〉 denotes stochastic average that is taken over a
sufficiently long time. The δjk function accounts for the
initial independence of the two lasers in our experiment,
so they have a zero degree of correlation.

For an optically thin sample, the output field can be
written as

Eout(t) = E1(t) + E2(t) + i
β

2cε0
P(t), (6)
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where β is a real constant depending on the atomic density
and length of the sample, and P is the complex polariza-
tion excited in the medium given by

P(t) =
∫ ∞

−∞
dω01g(ω01)p1(t, ω01) exp [i(ω1t + φ1)]

+
∫ ∞

−∞
dω02g(ω02)p2(t, ω02) exp [i(ω2t + φ2)]. (7)

In this expression, the inhomogeneous Doppler broaden-
ing is given by g(ω0i), for atoms with resonance frequen-
cies ω0i in the laboratory reference frame. p1(t, ω01) and
p2(t, ω02) are the slowly-varying atomic coherences ex-
cited by fields 1 and 2, respectively.

The detected intensities of fields 1 and 2 are given by
Iq(t) = 2 c ε0 |Eout(t) · eq(t)|2, where q = 1, 2. All power
spectra can be obtained from the expression

Sqq′(ω) =
∫ ∞

−∞
[〈Iq(t + τ)Iq′ (t)〉 − 〈Iq(t + τ)〉〈Iq′ (t)〉]

× exp (iωτ)dτ, (8)

and we recall that the sum and difference spectra are given
by equations (3). If we discard terms of second order in β
and terms independent of τ , and use equations (6) to (8),
we can write

Sqq′(ω) = β2EqEq′

∫ ∞

−∞
dω0q

∫ ∞

−∞
dω′

0q′gq(ω0q)gq′(ω0q′)

×
{
−

∫ ∞

−∞
dτ exp (iωτ)[〈pq(t + τ, ω0q)pq′(t, ω′

0q′)〉

−〈pq(t, ω0q)〉〈pq′ (t, ω′
0q′)〉]

+
∫ ∞

−∞
dτ exp (iωτ)[〈pq(t + τ, ω0q)p∗q′(t, ω′

0q′)〉

−〈pq(t, ω0q)〉〈p∗q′ (t, ω′
0q′)〉] + cc

}
, (9)

where we can see that the power spectra are obtained from
the covariance matrix of the detected intensities, which
are then ultimately related to the covariance matrix for
the atomic variables p1 = |p1| and p2 = |p2|. We now
present an outline for the calculation of the atomic co-
variance matrix for the case of a three level atom excited
by two phase-diffusing fields. More details can be found in
reference [12], especially in its Appendix B.

3.2 Atomic polarization spectra

The total Hamiltonian can be written as

H(t) = H0 + V (t), (10)

where H0 = �ω01|0〉〈0| + �ω21|2〉〈2| is the free-atom
Hamiltonian and

V (t) = − �Ω1 exp [i(ω1t + φ1)]|1〉〈0|
− �Ω2 exp [i(ω2t + φ2)]|2〉〈0|, (11)

is the interaction Hamiltonian, with the corresponding
Rabi frequencies for both coupling fields given by Ωj .
Since no detailed Zeeman structure is considered, we took
both Rabi frequencies as real. We now follow straightfor-
ward steps to write the Bloch equations, in the Liouville
form, from (10) and imposing the Rotating Wave Approx-
imation (RWA), which results in

dy = exp[iN1(ω1t + φ1)] exp[iN2(ω2t + φ2)]Axdt + y0dt.
(12)

Here N1 and N2 are square diagonal matrices with only
zeros and ones, y0 is a column matrix accounting for the
continuous flow of atoms through the laser beam and
A(Ω1, Ω2, Γ, γ, ∆1, ∆2, δR) is the evolution Bloch matrix,
that is function of several physical parameters: Γ is the
total excited state decay rate, γ is a decay rate for the
lower states coherence associated to the finite interaction
time, ∆j = ωj − ω0j is the optical detuning associated to
laser j, and δR = ∆1 − ∆2 is the Raman detuning. The
column matrices containing the rapid and slowly varying
elements of the atomic density matrix are y and x, respec-
tively. They are related by the transformation

x = exp[−iN1(ω1t + φ1)] exp[−iN2(ω2t + φ2)]y. (13)

We have special interest in the x matrix, because it con-
tains the slowly varying atomic coherences (p01, p02, p12,
and their conjugates). To proceed with the calculations
of the stochastic averages one must expand the exponen-
tial factors up to second order in the dφj ’s and take aver-
ages using equation (5), resulting in a differential equation
for 〈x〉

d〈x〉 = [−A1〈x〉 + y0]dt (14)

with

A1 = iN1ω1 + iN2ω2 + b1N
2
1 + b2N

2
2 − A, (15)

whose steady state solution is

〈x〉 = A−1
1 y0. (16)

However, products in the form 〈pq(t + τ, ω0q)p∗q′(t, ω′
0q′)〉

and 〈pq(t + τ, ω0q)pq′(t, ω′
0q′)〉 appear in equation (9). To

evaluate these terms it is convenient to first calculate the
second order correlation function

〈G(t, t; ω0j , ω0k)〉 = 〈x(t, ω0j)x†(t, ω0k)〉, (17)

and then calculate

〈c2(t, t; ω0j , ω0k)〉 = 〈G(t, t; ω0j , ω0k)〉
− 〈x(t, ω0j)〉〈x†(t, ω0k)〉, (18)

where x† represents the hermitian conjugate of x. Finally,
we use the regression theorem to compute 〈G(t+ τ, t; ω0j ,
ω0k)〉. To obtain an equation of motion for
〈G(t, t; ω0j , ω0k)〉 we use the definition (13), differ-
entiate the right-hand-side keeping up to second order
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terms in the stochastic phases and use (12), resulting in

d〈G(t, t; ω0j , ω0k)〉 =

{−A1(ω0j)〈G(t, t; ω0j , ω0k)〉 − 〈G(t, t; ω0j , ω0k)〉A†
1(ω0k)

+ 2b1N1〈G(t, t; ω0j , ω0k)〉N1 + 2b2N2〈G(t, t; ω0j , ω0k)〉N2

+ y0〈x†(t, ω0j)〉 + 〈x(t, ω0j)〉y†
0}dt. (19)

This and the use of the regression theorem allow one to
get an equation of motion for 〈c2(t, t + τ ; ω0j , ω0k)〉

d
dτ

〈c2(t, t + τ ; ω0j , ω0k)〉 = −A1〈c2(t, t + τ ; ω0j , ω0k)〉,
(20)

which will be used in the calculation of the spectra. A
possible way to obtain a solution of equation (20) is to
take its Laplace transform

G(s; ω0j , ω0k) = [s + A1]−1〈c2(t, t; ω0j , ω0k)〉 (21)

where G(s; ω0j , ω0k) is the Laplace transform of 〈c2(t, t +
τ ; ω0j , ω0k)〉, and 〈c2(t, t; ω0j , ω0k)〉 can be calculated us-
ing the steady state solution of (19). Since the Laplace
transform is related to the Fourier Transform by

∫ ∞

−∞
f(τ) exp (iωτ)dτ =

∫ ∞

0

f(τ) exp (iωτ)dτ

+
∫ ∞

0

f(τ)† exp (−iωτ)dτ

= G(s = −iω) + G†(s = iω), (22)

the solutions G(s; ω0j , ω0k) will be used to obtain the final
results of (9). To include the fourth level one just adds a
new level in the Hamiltonian (Eqs. (10)) and repeats the
calculation.

4 Results

4.1 Experimental results

The first step to measure the correlation between the fields
transmitted by the atomic sample is to characterize the in-
dividual noise spectrum of each field. Before interaction,
the intensity noise of the each ECDL is slightly above
the standard quantum limit (SQL). In contrast, in spite
of their narrow linewidths (∼1 MHz), both lasers have
large amounts of phase noise producing a very broad back-
ground spectrum [11].

After interaction with the Doppler broadened atomic
sample, the transmitted fields present high degrees of in-
tensity fluctuations. The intensity noise spectra extend
to frequencies as high as the Doppler width of the sam-
ple [9]. In the D2 line of 85Rb, the energy separations
of all excited levels are smaller than the Doppler width.
Thus, in a vapor cell each laser excites all the atomic
transitions allowed by dipole selection rules. The line
strength of the F → F ′−group is proportional to the mean
value averaged by all possible dipole transitions belonging
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Fig. 2. Individual laser noise for both lasers after interaction
with the atomic sample. Circles: laser 2 (full) and laser 1 (hol-
low) at high power (I = 118 mW/cm2); lines: laser 2 (black)
and laser 1 (gray) at low power (I = 25 mW/cm2). Resolution
Bandwidth (RBW) 1.0 MHz, Video Bandwidth (VBW) 3 kHz.
Each curve is an average over 100 measurements.

to this group. Substituting in the measured values, the
F = 3 → F ′−group has an effective dipole moment 1.12
times greater than the F = 2 → F ′−group. If both fields
have equal intensities (as is the case here), the Rabi fre-
quency associated to laser 2 will always be greater than
the one associated to laser 1. As a consequence, for a suf-
ficiently high power, the transmitted intensity fluctuation
of laser 2 will be greater than that of laser 1.

In Figure 2 we present these noise spectra for both
lasers at two different intensities measured after interac-
tion with the atomic medium. For high power, the PN-
to-AN conversion is considerably more efficient for the
laser that is locked to the F = 3 → F ′−group tran-
sition (laser 2), than for the laser locked to the F =
2 → F ′−group transition. However, for a sufficiently low
power, the efficiency of the PN-to-AN conversion is very
low (and comparable) for both fields, and the noise power
of laser 2 can be lower than laser 1 for small analysis
frequencies. In this case, we have to keep in mind that ab-
sorption also plays a role, attenuating the mean field value
and its fluctuations as well. The final result is a nonlinear
character of the PN-to-AN conversion process.

In Figure 3a we show the experimental results for C
as the intensity is increased, for a fixed analysis frequency
(ω = 2π×3.5 MHz). The first important point to notice is
the high degree of correlation between the two fields after
the sample, which can reach absolute values above 0.6.
The other important feature is the clear transition from
correlation to anti-correlation as the intensity is increased,
passing through a nearly uncorrelated situation around
55 mW/cm2.

We also measured the correlation spectral dependence
which is shown in Figures 4a–4d for different intensi-
ties. We observe that the transition from correlation to
anti-correlation occurs for all analysis frequencies from
2.5 MHz up to 14 MHz. Outside this spectral range,
electronic noise prevents us from measuring the four
power spectra necessary to evaluate C. At 14 MHz the
correlation almost vanishes for all intensities. Nearly
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Fig. 4. (a)–(d) Experiment. Correlation coefficient spectra for
various field intensities (in mW/cm2): (a) 13, (b) 61, (c) 96,
(d) 118. The gray curve in (a) gives the same measurement
without the vapor cell and for the highest intensity. RBW =
1.0 MHz, VBW = 3 kHz. Each curve is an average over 100
measurements. (e)–(h) Theoretical result for the correlation
coefficient spectra for various Rabi frequencies (Ω): (e) Ω =
0.8Γ , (f) Ω = 1.6Γ , (g) Ω = 2.0Γ and (h) Ω = 2.4Γ . Other
parameters are ∆1 = ∆2 = 2π × 28.6 MHz, b1 = b2 = 0.08Γ ,
γ = 0.02Γ .

zero correlation is observed in the range from 50 to
60 mW/cm2, with small fluctuations depending on the
analysis frequency. Outside this range, the beams are
clearly correlated over all the observed spectrum. Without
the vapor cell in the beam pathway (gray curve in Fig. 4a),
the correlation goes to zero for all analysis frequencies, as
expected for two independent lasers.

The change in sign of the correlation coefficient can be
understood as a consequence of the competition between
two different processes occurring in a 3-level Λ system:
EIT and two-photon Raman transitions (both Stokes and
anti-Stokes). At low intensities, EIT generates intensity
correlations between the fields, since higher intensities of
one field lead to an increase in the transparency of the
medium to the second one. As the intensity is increased,
the atomic transitions are power broadened and the sys-
tem becomes saturated, so the Raman process (where one
photon is absorbed from one field and emitted in the
other) dominates the atomic excitation. Since in this case
the decrease in one field’s intensity results in an increase
of the other’s, it leads to an intensity anti-correlation be-
tween them. This will be clarified below, when we theoret-
ically analyze the role of the optical detuning in a 3-level
and in a 4-level atom.

4.2 Numerical results

In order to understand the influence of the various physical
parameters involved in our experimental data, we explored
our model in different ways. First, we analyzed the situ-
ation of a 3-level atom at rest, observing the dependence
of correlation with the optical detuning, giving a physical
interpretation for the change in sign of the correlation co-
efficient. Next, we studied the effect of the Rabi frequency
on the correlation for the same situation, and in a second
moment we performed the Doppler integration, observing
the contribution of atoms of different velocity classes. Fi-
nally, we emphasize the contribution of the other excited
atomic level presenting numerical results for the 4-level
system. These results are compared to experimental data,
showing good agreement.

The conversion of phase-noise to amplitude-noise is
the main source of fluctuations observed in this system,
but it is not sufficient to explain the passage from cor-
relation to anti-correlation. We can have a better under-
standing by analyzing what happens to the correlation
coefficient in the simplified model of a 3-level system at
rest. In a Λ configuration, the EIT resonance occurs in a
frequency window (usually) much smaller than the natu-
ral linewidth associated to the optical transition. In other
words, the two-photon Raman detuning — expressed as
δR = ∆2−∆1 following the notation of Figure 1 — should
be zero and both fields must be nearly resonant with the
(real) atomic state (∆2 = ∆1 = 0). If δR �= 0, linear ab-
sorption should occur. On the other hand, if both fields
are off resonance with the excited level and δR = 0, the
Raman process prevails. In this case, the atom can not
absorb a photon from one of the two fields independently
from the other. Only the two-photon stimulated Raman
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Fig. 5. Numerical calculation of the correlation coefficient C
for a 3-level atom at rest as function of analysis frequency
for different optical detunings. Two power ranges were an-
alyzed: (a) Ω1 = 0.1Γ , (b) Ω1 = Γ. Other parameters are
Ω2 = 1.12Ω1, b1 = b2 = 0.08Γ, γ = 0.02Γ .

process, in which a photon absorbed from one field is re-
emitted into the other field, can occur with high proba-
bility. We understand that the competition between these
two processes is the basis of the observed change of sign
for the correlation between pump and probe fields.

In Figure 5 we show results that support our argu-
ments. We numerically calculated the correlation coeffi-
cient C as a function of analysis frequency for a 3-level
atom at rest with constant Rabi frequency Ω and differ-
ent values of the optical detuning ∆. The calculations for
low field intensity, presented in Figure 5a, give a nearly
flat spectrum, with a reduction in the absolute value of
correlation for higher analysis frequencies, following the
behavior expected from the limited linewidth of the laser
phase-noise. In these curves, we can see clearly the change
from correlation to anti-correlation with an increasing de-
tuning. This effect can be interpreted as the passage from
the resonant EIT to a nonresonant Raman process, ac-
companied by a change in the photon statistics. For a
higher intensity — Figure 5b — the anti-correlation ap-
proaches its limit even for higher analysis frequencies. This
can be seen as a consequence of the power broadening pro-
duced by the growth of intensity, increasing the contribu-
tion of the Raman process. Therefore, two mechanisms
are present. While detuning reduces the EIT process and
the intensity correlation, power broadening increases the
Raman process and the anti-correlation.

A more detailed study of the effect of the field inten-
sity can be seen in Figure 6a. Here we analyze an atom at
rest, with zero detuning. We can see the change from cor-
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Fig. 6. Numerical results of the correlation coefficient as a
function of the analysis frequency for various Rabi frequencies
(Ω) in the case of a 3-level atom at rest (a) and for a Doppler
broadened ensemble (b). Ω1 = 0.5Γ (solid), Ω1 = 1.0Γ
(dashed), Ω1 = 2.2Γ (dotted). Ω2 = 1.12Ω1 , Γ ≈ 2π × 6 MHz
for 85Rb, b1 = b2 = 0.08Γ, γ = 0.02Γ , ∆1 = ∆2 = 0.

relation to anticorrelation as a consequence of the increase
in the Raman process, together with a broadening of the
shape of the curve, demonstrated by an increase in the
frequency for which the correlation changes sign. This can
also be associated with power broadening of the atomic
transition. Although we can see a few similarities with
the experimental case, such as the change in sign of the
correlation coefficient C with the incident intensity, the
correlation changes rapidly with the analysis frequency,
differently from what is observed in the experiment.

A better agreement to experimental data is obtained in
Figure 6b, where the Doppler integration was performed.
In fact, it is well-known that in the Λ configuration with
co-propagating fields, atoms belonging to all different ve-
locity classes contribute homogeneously to the signal, so
if one is calculating the mean values, the Doppler integral
can be avoided. However, for a phase diffusing field the
optical detuning is a very important parameter and the
Doppler width must be taken into account. One can see
intuitively that a two-level atom at rest perfectly resonant
with the field is almost insensitive to the field phase fluc-
tuation, because it is at the maximum of the absorption
curve. In contrast, if the atom is at the maximum slope of
the absorption curve (or at the maximum of the dispersion
curve), a small phase fluctuation will induce a large inten-
sity fluctuation in the absorption profile and, as a conse-
quence, in the transmitted light. This is the reason why
the PN-to-AN conversion is associated to the real part of
the atomic polarization [9,12]. Thus, the Doppler integral
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accounts for the atoms having all the possible optical de-
tunings and the PN-to-AN conversion in an atomic vapor
is better reproduced. Furthermore, since the only source
of noise in the theory is the fluctuating phases of the inci-
dent fields, this indicates that PN-to-AN conversion is the
basic process behind our experimental observations.

With the integration over the Doppler width, we finally
observe a curve that has a change from correlation to anti-
correlation, but with a profile that changes slowly with
the analysis frequency and doesn’t reach the high values
of correlation calculated for an atom at rest. Figure 6b
still presents quantitative differences with respect to the
experimental data. For example, we see that the passage
to anti-correlation occurs for a broad range of analysis
frequencies, higher than 4 MHz, while in the experiment,
this passage occurs for smaller frequencies. As seen below,
the inclusion of the fourth level in the model provides
better agreement with the experimental data.

A better description of our system is obtained by in-
cluding the second excited level |0′〉 shown in Figure 1 in
the numerical calculation. In Figure 4e–4h we show results
for the correlation coefficient C as a function of the anal-
ysis frequency, for different values of Rabi frequencies, in
the case of the 4-level system. In this situation, each tran-
sition has a different atomic dipole moment, so the field
intensity is parameterized by a global constant Ω, which is
proportional to the field amplitude and the atomic dipole
moment. We chose such a range of field intensities in or-
der to adjust the theoretical results to the experimental
curves. We notice that in the experimental situation the
lasers were not locked to a real atomic transition corre-
sponding to atoms at rest. Instead, we used a saturated
absorption scheme to lock laser 2 on a cross-over peak, and
the other laser was locked on the EIT resonance formed
by the superposition of both. In this sense, the zero ve-
locity atomic class was detuned approximately 28.6 MHz
above the F ′ = 3 level. Since in the model the zero energy
reference for the excited state is taken on the |0〉 state, we
had to include an optical detuning in order to get a bet-
ter agreement with the experimental curves. If this optical
detuning is not considered, the anti-correlation is signifi-
cantly reduced (in absolute value), but the spectral feature
of C(ω) does not change appreciably. We can observe the
change from correlation to anti-correlation for increasing
Rabi frequencies, and a good qualitative agreement of the
spectral plots, especially for higher Rabi frequencies.

In order to compare these results with our experi-
mental data, we also calculated the variation of C with
the Rabi frequency for a fixed analysis frequency (ω =
2π × 3.6 MHz). This is shown in Figure 3b. We clearly
see a change in sign for the correlation between pump
and probe fields as in the experimental case, with a good
agreement to the experimental data.

Finally, we now briefly comment the role of the laser
linewidth on the sign of C(ω). In light of the previous
analysis, the correlated fields in the EIT situation become
anti-correlated if either the optical detuning is increased
or the atomic transition becomes power broadened. We
checked numerically that if the laser linewidth increases so

much that it is comparable to (or higher than) the excited
state decay rate Γ , the correlation between fields tends to
change sign. The physical mechanism is totally analogous
since the effect of laser broadening is to produce more side-
bands in frequencies that are not perfectly resonant with
the EIT transition, favoring the Raman process. We also
confirmed that in a 3-level system this effect is more pro-
nounced than in a 4-level atom. In other words, for the
same laser linewidth and power, C(ω) is more negative
in the case of a 3-level system than in the 4-level situa-
tion. Consider that the carrier laser frequency is resonant
with one of the excited levels. In the 3-level atom, the
laser sidebands will be far off resonance with the atomic
transitions, producing pure Raman transitions, while in a
4-level atom, these sidebands approach the other excited
state forming a second Λ system (eventually becoming res-
onant), so both processes tend to compensate each other.

It is important now to address some significant dif-
ferences between the experimental and theoretical results
presented in Figure 4. The main discrepancy observed is
that the theoretical curves do not show the fast decay
of the correlation as the analysis frequency is increased.
Discrepancies in the higher frequency domain can be ac-
counted for by the amplifier gain and the reduction of the
signal-to-noise ratio of our detection. Moreover, in the ex-
perimental curves, the Spectrum Analyzer measures the
noise power centered at a chosen frequency and averaged
over a Resolution Bandwidth of 1 MHz. In the model, the
analyzer is supposed to be ideal.

Differences may also come from the simplicity of our
model. In the Doppler broadened 85Rb D2 transition, the
excited level is composed of 4 states, namely F ′ = 1–4,
two of which (the F ′ = 2 and F ′ = 3 considered in the
model) contribute to the Λ level-schemes. However, three
of the four levels contribute to each of the single-photon
optical transitions, which give rise to the PN-to-AN pro-
cess. These are crucial for the S11(ω) and S22(ω) spectra
— used for determining the correlation coefficient C. An
important point comes from the absence of the F ′ = 4
level in calculating S22, because this is the strongest op-
tical (and closed) transition and is the main responsible
for the increase in the noise power seen in Figure 2 for
the laser 2. A similar reasoning is valid for the F ′ = 1
level for the case of laser 1. Furthermore, in Figure 3 we
see that, in the experiment, the laser intensity correspond-
ing to the change in sign for the correlation coefficient is
much higher than the saturation intensity. In the theoret-
ical case, the Rabi frequency necessary for this change in
sign is approximately twice the saturation. We remember
that the model is based on the assumption of an optically
thin medium, which is not necessarily true in the exper-
iment. So, the real field intensity required to overcome
the EIT effect and introduce anti-correlations via Raman
transitions may be considerably higher.

The way we model the laser noise may also give rise to
discrepancies with the experiment. We considered that the
lasers have perfect Lorentzian lineshapes, which have slow-
decay spectral wings. A more realistic model for a diode
laser, on the other hand, should include a Gaussian cutoff



L.S. Cruz et al.: Laser-noise-induced correlations and anti-correlations in EIT 539

to the Lorentzian lineshape [17,19,25], so that the wings of
the field spectra fall much faster than for a pure Lorentzian
shape. This comes from the fact that the amplitude and
phase fluctuations are strongly coupled in a solid state
laser [26,27]. Noise spectra, from PN-to-AN conversion,
will also depend on the shape of the phase noise spectra.
This Gaussian cutoff may account for the smaller abso-
lute values of correlation obtained in the experiment, in
comparison with the theoretical data, as well as the faster
reduction of the correlation for higher analysis frequencies.
Models different from the one adopted here may give a bet-
ter agreement to the experimental data, but their imple-
mentation is a much harder task using the present frame-
work. Nevertheless, the simplified Lorentzian description
already gives us a good understanding of the physical pro-
cesses involved, and quite good agreement to the experi-
mental data.

5 Conclusions

In summary, we have shown that the propagation of two
initially independent fields generating EIT in a vapor cell
results in a high degree of correlation between the fields for
a broad range of analysis frequencies. We also observed the
transition from intensity correlation to anti-correlation as
the field intensities are increased. We explain these obser-
vations in terms of conversion of phase noise to amplitude
noise by the atomic medium, and the opposite behaviors
of the EIT and Raman resonances. We develop a more de-
tailed calculation to support this claim. In this way, these
observations reveal new basic features of the EIT effect,
and stress again how deeply EIT can affect the excitation
fields.
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